

Math 565: Functional Analysis

Lecture 1

Complex numbers. $\mathbb{C} := \mathbb{R}[i]/i^2 + 1$, i.e. $\mathbb{C} = \{a + ib : a, b \in \mathbb{R}\}$ where $i^2 = -1$, so $(a_1 + ib_1)(a_2 + ib_2) = (a_1a_2 - b_1b_2) + i(b_1a_2 + a_1b_2)$ and $(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2)$. As a vector space over \mathbb{R} , \mathbb{C} is isomorphic to \mathbb{R}^2 .

We equip \mathbb{C} with a norm: $|a+ib| = \sqrt{|a|^2 + |b|^2}$, hence isomorphic to the 2-norm on \mathbb{R}^2 , hence \mathbb{C} is complete in this norm.

For $z \in \mathbb{C}$, $z = a + ib$, denote

- o $\operatorname{Re} z := a$ and $\operatorname{Im} z := b$.
- o $\bar{z} := a - ib$, called the conjugate of z . Note that $z\bar{z} = a^2 + b^2 = |z|^2$.
- o $\operatorname{sgn}(z) := \frac{z}{|z|}$ so $|z| = z\bar{z} = z \cdot \operatorname{sgn}(\bar{z})$ for $z \neq 0$.
- o $z = r \cdot e^{i\pi z \theta}$, where $r := |z| > 0$ and $e^{i\pi z \theta} = \operatorname{sgn}(z)$.

Fundamental Theorem of Algebra. Every polynomial $p \in \mathbb{C}[x]$ has a root in \mathbb{C} .

In particular, $p(x) = \prod_{i=1}^n (x - d_i)$, where $n = \deg(p)$ and $d_1, \dots, d_n \in \mathbb{C}$ are the roots of $p(x)$.

Banach spaces.

Let X be a \mathbb{C} -vector space. A seminorm on X is a function $\| \cdot \| : X \rightarrow [0, \infty)$ satisfying:

- (i) $\|dz\| = |d| \cdot \|z\|$ for all $d \in \mathbb{C}$, $z \in X$.
- (ii) $\|x+y\| \leq \|x\| + \|y\|$ for all $x, y \in X$. (Implies: $\|x\| - \|y\| \leq \|x-y\|$.)

If a seminorm also satisfies (iii) $\|x\| = 0 \Rightarrow x = 0$, then we call it a norm.

A normed vector space (over \mathbb{C}) is a pair $(X, \|\cdot\|)$ where X is a \mathbb{C} -vector space and $\|\cdot\|$ is a norm on X .

As usual, a norm $\|\cdot\|$ defines a metric on X by

$$d(x, y) := \|x - y\|.$$

We call the topology of this metric the norm topology on X , and convergence in this topology/metric is called convergence in norm.

If this metric is complete, we call $(X, \|\cdot\|)$ a Banach space.

Examples.

(a) \mathbb{C}^d , $1 \leq d < \infty$, is a Banach space equipped with the p -norm for any $1 \leq p \leq \infty$, i.e. for $\vec{x} \in \mathbb{C}^d$, $\|\vec{x}\|_p := \left(\sum_{i=1}^d |x_i|^p \right)^{\frac{1}{p}}$ if $p < \infty$ and

$$\|\vec{x}\|_\infty := \max_{1 \leq i \leq d} |x_i|.$$

for any $1 \leq p, q \leq \infty$,

All these norms are Lipschitz-equivalent, i.e. $\exists c, C > 0$ such that $c\|x\|_q \leq \|x\|_p \leq C\|x\|_q$.

(b) For a measure space (X, \mathcal{B}, μ) , let $L^1(\mu) := L^1(X, \mathcal{B}, \mu)$ denote the quotient of the vector space of all μ -integrable functions by the equivalence relation $f =_\mu g$ (i.e. $f = g$ μ -a.e.).

We showed last semester that this is a Banach space, using the absolutely convergent series criterion.

We will discuss $L^p(\mu)$ spaces, $1 \leq p \leq \infty$, later.

(c) Let X be a set. Denote by $B(X)$ the set of all bdd \mathbb{C} -valued functions on X . Then $B(X)$ is a \mathbb{C} -vector space under pointwise addition and scalar multiplication. We equip this space with the sup norm, namely:

$$\|f\|_{\sup} := \sup_{x \in X} |f(x)|.$$

It follows from the Δ -ineq. for $\|\cdot\|$ on \mathbb{C} that $\|\cdot\|_{\sup}$ is indeed a norm.

Claim. $B(X)$ with sup norm is a Banach space.

Proof. Let $(f_n) \subseteq B(X)$ be a norm-Cauchy sequence. Then for each $x \in X$, $|f_n(x) - f_m(x)| \leq \|f_n - f_m\|_{\sup}$, hence the sequence $(f_n(x)) \subseteq \mathbb{C}$ is Cauchy, so it converges: $f(x) := \lim_{n \rightarrow \infty} f_n(x)$. Furthermore, note that

$$|\|f\|_{\sup} - \|f_m\|_{\sup}| \leq \|f - f_m\|_{\sup}$$

hence the sequence $(\|f_n\|_{\sup})_{n \in \mathbb{N}} \subseteq \mathbb{R}$ is also Cauchy, thus converges to some $c \in \{0, \infty\}$. But then for each $x \in X$,

$$|f(x)| = \lim_{n \rightarrow \infty} |f_n(x)| \leq \lim_{n \rightarrow \infty} \|f_n\| = c, \text{ so } \|f\|_{\sup} \leq c \text{ hence } f \in B(X).$$

Lastly, we need to show that $\|f - f_n\|_{\sup} \xrightarrow{n \rightarrow \infty} 0$, i.e. $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ such that $\forall n \geq N$, we have $\|f - f_n\|_{\sup} \leq \varepsilon$, equivalently,

$$|f(x) - f_n(x)| \leq \varepsilon \text{ for all } x \in X.$$

But for each fixed $x \in X$, we have

$$|f(x) - f_n(x)| \leq |f(x) - f_{n+k}(x)| + |f_{n+k}(x) - f_n(x)| \leq |f(x) - f_{n+k}(x)| + \|f_{n+k} - f_n\|_{\sup}$$

so $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $\|f_{n+k} - f_n\|_{\sup} < \varepsilon/2$ by the norm-Cauchyness. But also we can k large enough (depending on the specific x and ε) so that $|f(x) - f_{n+k}(x)| < \varepsilon/2$. Hence

$$|f(x) - f_n(x)| \leq \varepsilon/2 + \varepsilon/2 \leq \varepsilon \text{ for all } n \geq N. \text{ Thus, } \|f - f_n\|_{\sup} \leq \varepsilon. \square$$

Observation. Closed subspaces of Banach spaces are Banach spaces.

This gives more examples:

(d) Let X be a topological space and denote by $BC(X)$ the set of bounded continuous \mathbb{C} -valued functions on X . Observe that $BC(X)$ is a subspace of the vector space $B(X)$. We show that $BC(X)$ is a Banach space by proving:

Claim. $BC(X)$ is closed in $B(X)$.

Proof. Let $f_n \rightarrow f$ in $B(X)$ where $(f_n) \subseteq BC(X)$. We show that $f \in BC(X)$ as well. We fix $x_0 \in X$ and show that f is continuous at x_0 , i.e. for any neighbourhood $V \ni f(x_0)$ (i.e. $f(x_0) \in \text{int}(V)$), $f^{-1}(V)$ is a neighbourhood of x_0 . Fix $\epsilon > 0$.

$$\begin{aligned} |f(x_0) - f(x)| &\leq |f(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x)| + |f_n(x) - f(x)| \\ &\leq 2\|f - f_n\|_{\text{sup}} + |f_n(x_0) - f_n(x)|. \end{aligned}$$

Fix $n \in \mathbb{N}$ so that $\|f - f_n\|_{\text{sup}} < \epsilon/3$. Since f_n is continuous at x_0 , \exists open $U \ni x_0$ such that $\forall x \in U$, we have $|f_n(x) - f_n(x_0)| < \epsilon/3$. Thus, $\forall x \in U$, we have $|f(x_0) - f(x)| < 2\cdot\epsilon/3 + \epsilon/3 = \epsilon$. □

When X is compact, $B(X) = C(X)$ the space of all continuous functions on X .

(e) Again let X be a topological space. Let $C_0(X)$ denote the set of all $f \in C(X)$ such that $\forall \epsilon > 0$ the set $\{|f| \geq \epsilon\} := \{x \in X : |f(x)| \geq \epsilon\}$ is compact. Note that such an f is bounded on $\{|f| \geq \epsilon\}$ by compactness and of course $f|_{\{|f| < \epsilon\}}$ is bdd by ϵ , so f is bdd, hence $C_0(X) \subseteq BC(X)$.

Furthermore, $C_0(X)$ is a subspace because

$$\{|f+g| \geq \epsilon\} \subseteq \{|f| \geq \epsilon/2\} \cup \{|g| \geq \epsilon/2\}.$$

is a closed subset of a compact set \uparrow (the set $\{|f+g| \geq \epsilon\}$ is closed because it's the preimage under $|f+g|$ of the closed set $[\epsilon, +\infty)$).

Claim. $C_0(X)$ is closed in $BC(X)$, hence a Banach space.

Proof. Let $f_n \rightarrow f$ in sup norm in $BC(X)$ where $(f_n) \subseteq C_0(X)$. Then $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ such that $\forall n \geq N$, we have $\|f_n - f\| < \varepsilon/2$. In particular, for any $x \in X$, $|f(x)| \geq \varepsilon$ implies $|f_n(x)| \geq \varepsilon/2$, thus $\{|f| \geq \varepsilon\} \subseteq \{|f_n| \geq \varepsilon/2\}$, hence is compact being a closed subset of a compact set. \square

(f) Let (X, \mathcal{B}) be a measurable space. Jordan decomposition theorem says that every signed measure ν on (X, \mathcal{B}) uniquely decomposes into a difference of two **orthogonal** unsigned measures $\nu = \nu_+ - \nu_-$, which are finite if ν is. Call the (unsigned) measure $|\nu| := \nu_+ + \nu_-$ the **total variation (measure)** of ν . It is an exercise (HW) to check that for each $B \in \mathcal{B}$,

$$|\nu|(B) = \sup_{\varphi} \left| \int \varphi d\nu \right|,$$

where φ ranges over all \mathcal{B} -measurable real-valued functions with $|\varphi| \leq 1$. Denoting by $M_{\mathbb{R}}(X, \mathcal{B})$ the \mathbb{R} -vector space of all finite signed measures on (X, \mathcal{B}) , the function

$$\|\nu\|_{TV} := |\nu|(X) = \sup_{\substack{|\varphi| \leq 1 \\ B \in \mathcal{B}}} \left| \int \varphi d\nu \right|.$$

is a norm on $M_{\mathbb{R}}(X, \mathcal{B})$, called the **total variation norm**. This makes $M_{\mathbb{R}}(X, \mathcal{B})$ a normed \mathbb{R} -vector space.

Claim. $M_{\mathbb{R}}(X, \mathcal{B})$ is a real Banach space.

Proof. Uses the absolutely convergent series criterion and the Radon-Nikodym theorem. Left as a good HW exercise. \square

We also define the complex version: a finite **complex measure** on (X, \mathcal{B}) is a function

$$\rho: \mathcal{B} \rightarrow \mathbb{C}$$

which is of the form $\rho = \rho_{\text{re}} + i\rho_{\text{im}}$, where $\rho_{\text{re}}, \rho_{\text{im}}$ are finite signed measures on (X, \mathcal{B}) . Define the **total variation (measure)** of ρ by

$$|\rho|(B) = \left| |\rho_{\text{re}}|(B) + i|\rho_{\text{im}}|(B) \right| = \sqrt{|\rho_{\text{re}}|(B)^2 + |\rho_{\text{im}}|(B)^2}.$$

Again it's not hard to check (HW) that for each $B \in \mathcal{B}$, we have

$$|\rho|(B) = \sup_{\varphi} | \int \varphi \, d\rho |,$$

where φ ranges over all complex-valued \mathcal{B} -measurable functions with $|\varphi| \leq 1$.

Then the total variation norm $\|\varphi\|_{TV} := |\rho|(\varphi)$ makes $M_{\mathbb{C}}(X, \mathcal{B})$ into a normed \mathbb{C} -vector space. It also follows from the real counterpart that $M_{\mathbb{C}}(X, \mathcal{B})$ is also a Banach space.